A Simple Route To Optically Pure 2,3_Diaminobutane

Simon Y.M. Chooi, Pak-hing Leung*, Siu-choon Ng*, G.H. Quek, K.Y.Sim*

Department of Chemistry, National University of Singapore, Singapore 0511

(Received 23 August 1991)

Abstract : Optically pure 2,3-diaminobutane was prepared by a simple and efficient method via the key intermediate 2,3-diazidobutane.

A great deal of attention has been focused on 2,3-diaminobutane because it plays important roles in many aspects of chemistry and medicine. As examples of its applications, we note the anti-cancer properties of its platinum(II) drugs¹, the large number of stereochemical investigations of its metal chelates², the high stereoselectivity offered by its transition metal complexes in homogenous asymmetric catalysis³ and the enhanced activity exhibited by the corresponding $\text{cobalt}(\mathbf{II})$ schiff base in the oxygenation of 3-methylindole⁴.

2,3-Diaminobutane exists as three stereochemically distinct isomers arising from the two stereogenic carbon centres. The methods used for obtaining the optically pure 2,3-diaminobutane generally involved an initial separation of the racemic and meso diastereomers⁵ followed by an optical resolution of the enantiomers⁶. These procedures, however, are not only slow⁵, troublesome⁷, and difficult⁸, they also require experienced researchers with good crystallization skills. A recent report on the asymmetric synthesis of aliphatic 1,2-diamines involved vigorous reaction conditions with moderate yields. 9 The method put forward here provides the optically pure 2,3-diaminobutane in three technically simple steps, using the appropriate enantiomeric forms of 2,3-butanediol as starting materials [via a novel diazido intermediate].

The *(R,R)* form of 2,3-butanediol is commerically available while its enantiomer can be prepared in large scale from the naturally existing $(R,R)-(+)$ -tartaric acid¹⁰. Both forms of the diol can be converted to their dimesylates 2 in practically quantitative yields¹¹. Stereospecific conversion of (R,R) -2 to (S,S) -3 can be achieved by treating the former with excess sodium azide in dimethylformamide at 80 $^{\circ}$ C for 24 hours.¹² The workup involved extraction of the reaction mixture with 10% sodium chloride solution and diethyl-ether (to remove the inorganic salts and DMF) followed by the removal of organic solvent. The optically pure diazide (S, S) -3 was thus obtained as a pale yellow oil with $[\alpha]_D$ +115.20 (c 1.0, CH₂Cl₂)¹³. Reduction of the diazide to

 (S, S) -4 can be accomplished by treating the former with lithium aluminum hydride in boiling tetrahydrofuran for 16 hours. After the routine workup¹⁷, optically pure (S, S) -4 was isolated by fractional distillation under nitrogen (bp 126-129 °C); $[\alpha]_D$ +25.11 (neat), +29.40 (c 2.4, benzene), (Lit. values: $+25.18$ (neat), $+29.48$ (benzene))⁶. The overall yield of (S, S) -4 from dimesylate was 78%. The enantiomer (R,R) -4 was prepared in similar yield from (S,S) -2.

The method described is very efficient and large quantities of optically pure 2,3_diaminobutane can be prepared within a few days. No separation of diastereomers is necessary. We are currently preparing a range of functionalized diamines in their enantiomeric pure forms using a similar synthetic scheme.

References and Notes

- 1. Totani, T.; Ano, K.; Adachi, Y.; Shiratori, 0. Jpn. *Kokai Tokkyo Koho* JP 62,246, 588 [87, 246,588]; Chem. Abs. 1988, 109, 141545n and references cited therein.
- 2. Kuroda, Y.; Tanaka, N.; Goto, M.; Sakai, T. Inorg. Chem. 1989,28, 2163 and references cited therein.
- 3. Onuma, K.I.; Ito, T.; Nakamura, A. *Bull. Chem. Soc. Jpn.* **1980**, 53, 2012.
- **4.** Goto, M.; Koyama, M.; Usui, H.; Mouri, M.; Mori, K.; Sakai, T. *Chem Pharm. Bull. 1985,33, 927.*
- 5. Cooley, W. E.; Liu, C.F.; Bailar, J.C.Jr. *J. Am. Chem. Soc.* 1959, 81, 4189.
- 6. Dickey, F.H.; Fickett, W.; Lucas, H.J. J. *Am.* Chem. Sot. 1952, 74, 944.
- 7. Goto, M.; Matsushita, H.; Saburi, M.; Yosnikawa, S. *fnorg.* Chem. 1973, 12, 1498.
- 8. Evilla, R.F.; Young, D.C.; Reilley, C.N. *Inorg. Chem.* 1971, 10, 433.
- *9.* Oi, R.; Sharpless, K. B. *Tetrahedron Lett. 1991,32, 999.*
- 10. Plattner, J.J.; Rapoport, H. J. *Am.* **Chem. Sot. 1971, 93, 1758.**
- 11. Nonaka, T.; Baizer, M.M. *Electrochim. Acta 1983,28, 661.*
- 12. Reactions were performed under purified nitrogen. The reaction time could be shortened to 6h when DMSO was used as solvent, however, the workup was somewhat more difficult.
- 13. The diazide was not distilled due to safety considerations 14 . Nevetheless, it was found to be chemically pure by tic and spectroscopic techniques. The 300 MHz ¹H NMR spectrum of the diazide in CDCl₃ exhibited the methyl signal as a "doublet" at δ 1.31 (J_{H, H} = 6.5Hz) surrounding by a typical $AX_3A'X'$ ₃ satellite¹⁵ (J_{H-H} = 3.5Hz). The resonance signals for the non-equivalent methine proton are centred at δ 3.43. The infra red of the neat sample showed a strong azide absorption signal at 2100 cm^{-1} . The absolute configurations and the optical purity of 3 was developed by comparing with those of **1** and 416.
- 14. Scriven, E.F.V.; Turnbull, K. Chem. Rev. 1988, 88, 297 and references cited therein.
- 15. Bothner-By, A.A.; Colin, N. *J. Am. Chem. Soc.* 1962, 84, 743.
- 16. Gillard, R.D. *Tetrahedron 1965.21, 503.*
- 17. The workup is similar to those described for the isolation of 2,3-butanediol¹⁰.
- **Acknowledgement:** The work was supported by grants from the National University of Singapore and the Shaw Foundation (Singapore).